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Multifractal expansions and kinetic surface roughening processes

A. Bershadskii
Post Office Box 39953, Ramat-Aviv 61398, Tel-Aviv, Israel

~Received 12 January 1998; revised manuscript received 27 March 1998!

An analytic continuation method has been developed to improve the multifractal analytic expansions ap-
proach to the kinetic surface roughening processes. An analytic result for the dependence of the roughness
exponentHq on the indexq of the moments of the pair correlation function is obtained using this method.
Application of the method to some geometrical models is discussed, and good agreement established with
results of numerical simulations of the molecular beam epitaxy obtained by different authors.
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PACS number~s!: 81.15.2z, 68.55.2a, 05.40.1j
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I. INTRODUCTION

Kinetic surface roughening has recently been of great
terest to scientists owing to its relevance to a number
phenomena of practical importance, such as molecular b
epitaxy, formation of biological patterns, etc.~see, for re-
views, Refs.@1–3# and references therein!. The surface usu-
ally grows from a flat substrate and, due to presence of n
excitations, becomes rough during its evolution. The gen
alized roughness exponentsHq are used to describe this mu
tifractal process. They are introduced through the vari
moments of the height differences~the generalized height
height correlation functions!

cq~r !5
1

N (
i 51

N

uh~xi !2h~xi1r !uq;r qHq, ~1!

whereN is the number of points over which the average
taken, and the limitr→0 is considered. For a standard pa
tition, r;1/N. The authors of Ref.@4# assumed that, when
evaluating Eq.~1!, r andN may be related in a way differen
from r;1/N. That is,N;r 2Deff (Deff could be considered
here as a fractal dimension of the effective support of
process; for more details, see Sec. V!. The choice of a par-
ticular partition has no effect on theHq spectrum. However
Deff enters the relation betweenHq and the so-called gener
alized dimensionsDq . In Ref. @4#, a partition of the interval
@0,1# into N intervals with the measure

pi~r !5
uh~xi !2h~xi1r !u

(
j 51

N

uh~xj !2h~xj1r !u

~2!

was introduced. This can be viewed as a probability meas
and one can construct the corresponding generating func

Zq~r !5(
i 51

N

pi
q~r !,

and introduce the corresponding spectrumDq through the
expressionZq(r );r (q21)Dq in the limit r→0. Using this ap-
proach, the authors of Ref.@4# obtained the following rela-
tionships betweenDq andHq
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~q21!Dq5q~Hq2H1!1~q21!Deff ~3!

or

Hq5H11
~q21!~Dq2Deff!

q
~4!

~generallyDeff can be different fromD0 ; see Sec. V!. The
simplest way to obtain an analytical representation forDq
@and then, using Eq.~4!, for Hq# is to use a Maclaurin powe
series expansion in a vicinity ofq50. It is well known,
however, that a linear approximation of the generalized
mensionDq is generally applicable in a narrow vicinity o
the pointq50 only ~see, for instance, Refs.@5–7# and ref-
erences therein!. On the other hand, a quantitative descr
tion of multifractals beyond the linear approximation ofDq
is now possible due to the possibility of obtaining rath
accurate numerical data. In the present paper we shall s
that the concept of analytical continuation of standard th
modynamics quantities on a complex~temperature! plane
can be adapted in the context of multifractal measures. T
adaptation should then provide an improvement of the s
dard linear approximation of the generalized dimensionsDq .
Then we apply this finite-temperature approximation to
kinetic growth processes using relationship~4!.

II. THERMODYNAMIC INTERPRETATION
OF MULTIFRACTALITY

Let us, first of all, recall a thermodynamic interpretatio
of multifractality ~see, for instance, Refs.@8,9# and refer-
ences therein!. Suppose that the total volume of a samp
consists of ad-dimensional cube of sizeL. We divide this
volume intoN boxes of linear sizel @N;(L/ l )d#. We label
each box by the indexi, and construct for each box th
measure function of a fieldm(x,t),

m i~ l !5E
v i

m~x!dv,

where v i is volume of thei th box. Then the generalize
dimensionDq can be introduced by the following scalin
relationship ~see, for instance, Refs.@8,9# and references
therein!:
2660 © 1998 The American Physical Society
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Dq5 lim
~ l /L !→0

ln Z~q!

~q21!ln~ l /L !
,

where the partition function

Z~q!5(
i

m i
q .

This follows the scaling

Z~q!;~ l /L !t~q!,

where

t~q!5Dq~q21!. ~5!

On the other hand, the partition function can be represen
as follows

Z~q!.E r~a!~ l /L !qa2 f ~a!da,

wherea represents the singularity strength of the measurem,
and the f (a) singularity spectrum describes the statistic
distribution of the singularity exponenta. If we cover the
support of the measurem with balls of sizel, the number of
such balls that scale like (l /L)a, for a givena, behaves like
Na( l /L);( l /L)2 f (a). In the limit (l /L)→0, the sum is
dominated by the term (l /L)mina@qa2f(a)#. Then, from the defi-
nition of t(q), one obtains

t~q!5min
a

@qa2 f ~a!#.

Thus t(q) is obtained by Legendre transforming thef (a).
When f (a) andt(q) are smooth functions, this relationsh
can be rewritten in the following way

t~q!5qa2 f ~a!,
d f

da
5q. ~6!

The thermodynamics interpretation of these relationsh
means thatq can be interpreted with an inverse temperat
q5T21, and the limit (l /L)→0 can be seen as the therm
dynamic limit of infinite volume@V5 ln(L/l)→`#. Then by
identifying a i5 ln mi /ln(L/l) to the energyEi ~per unit of
volume! of a microstatei, one can rewrite the partition func
tion under the familiar form

Z~q!5(
i

exp~2qEi !. ~7!

From the definitionf (a)5 ln Na„( l /L)…/ ln(L/l), the singular-
ity spectrumf (a) plays the role of the entropy~per unit of
volume!.

III. ANALYTIC CONTINUATION

Expansion of the entropyf „a(q)… in a power series~the
high-temperature expansion!

f ~q!5 f ~0!1qS d f

dqD
q50

1q2
1

2 S d2f

dq2D
q50

1¯ ~8!
ed

l

s
e

in the first order approximation is

f ~q!; f ~0!1q2
1

2 S d2f

dq2D , ~9!

since generally (d f /dq)q5050 @see Eq.~6!#.
The generalized dimension spectrum corresponding to

~9! is ~see, for instance, Ref.@7# and references therein!

Dq;D01aq, ~10!

wherea is some constant.
It is known that entropy can have singularities in a co

plex temperature plane~see, for instance, Refs.@10–12# and
references therein!. If the multifractal entropyf (q) has sin-
gularities on the complexq plane, then the radius of conve
gence of thereal Maclaurin series expansion~8! is deter-
mined by the distance from the pointq50 to a nearest
singularity of f (q) in the complex plane. One could then u
the standard procedure of analytic continuation to obtai
power series expansion beyond the circle of convergenc
expansion~8!

f ~q!5 f ~q0!1~q2q0!S d f

dqD
q5q0

1~q2q0!2
1

2 S d2f

dq2D
q5q0

1¯ , ~11!

whereq0 is modulus of the complex-temperature singular
nearest to the pointq50.

Let us rewrite Eq.~11! in a form similar to Eq.~8!:

f ~q!5A1Bq1¯ , ~12!

where

A5 f ~q0!2q0S d f

dqD
q5q0

, B5S d f

dqD
q5q0

. ~13!

Using Eq.~6! it is easy to show thatt(q) corresponding to
Eq. ~12! has the form

tq52A1~C2B!q1Bq ln q1¯ , ~14!

whereC is some constant (q.0). One can see that an add
tional ‘‘logarithmic’’ term appears in the finite-temperatu
~FT! expansion~14!.

Using the conditiont(1)50 @see Eq.~5!#, we obtain,
from Eq. ~14!,

A5C2B, ~15!

and then we can rewrite Eq.~14! as

tq5A~q21!1Bq ln q1¯ . ~16!

It follows from Eqs.~5! and ~16! that

Dq5A1B
q ln q

~q21!
1¯ . ~17!
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IV. AN EXAMPLE OF THE MULTIFRACTAL
COMPLEX-TEMPERATURE SINGULARITIES

Let us consider the multifractality of a strange attractor
the baker map for which analytical results are available. T
transformation is defined as

@xn11 ,yn11#5@ l 1xn ,yn /h#, yn,h,
~18!

@xn11 ,yn11#5@ 1
2 1 l 2xn ,~yn2h!/~12h!#, yn.h.

The attractor of this map consists of an infinite number
lines in they direction which intersect a horizontal line i
two interwoven Cantor sets. These sets are characterize
contraction ratesl 1 and l 2 , and are visited with probabilities
h and 12h, respectively. The dimension spectrumDq of the
cross section follows from

hq

l 1
~q21!Dq

1
~12h!q

l 2
~q21!Dq

51. ~19!

If we introduce the definitionshq5a, (12h)q5b,l 2
(q21)Dq

5G, and lnl1 /ln l25k, then we can rewrite Eq.~19! as

Gk2bG~k21!2a50. ~20!

From this equation one obtains

dG

dq
5

da/dq1~db/dq!G~k21!

kG~k21!2b~k21!G~k22! .

dG/dq has a singularity whenG5b(k21)/k. Substituting
this relationship into Eq.~20! we obtain values ofq for
which dG/dq is singular:

q05
ln c

ln@h/~12h!k#
, ~21!

where

c52
~k21!~k21!

kk . ~22!

Since

f ~q!5Dq1q~q21!
dDq

dq
, ~23!

the entropyf (q) of the baker map also has singularities
the same values ofq5q0 .

The constantc is positive when (k21)521/n, wheren
53,5,7, . . . . Forthese specific values ofk, corresponding
values of q0 are real numbers, anddG/dq @and, conse-
quently, f (q)# has singularities on the real axis. In the ge
eral case, however, the values ofq0 are complex.

V. APPLICATIONS

To apply the FT approximation to real systems, let us s
from simple geometrical examples. In Apollonian packin
for instance, nonoverlapping circles of very different ra
are used to tile the region bounded by three touching cir
@13#. In Ref. @13#, a multifractal analysis of the Apollonian
f
is

f

by

t

-

rt
,
i
s

packings was carried out using the scaling behavior of
density distribution of the points where the circles touch ea
other. The set of these points provides the basis for an
propriate measure. The generalized dimensionsDq associ-
ated with the multifractal scaling of the distribution of touc
ing points in an Apollonian packing were calculated in R
@13#. Figure 1~adapted from Ref.@13#! shows a set ofDq is
obtained for the Apollonian packing. We chose the axes
that a straight line in this figure corresponds to the repres
tation ~17!. One can see that in this caseA5D0 . Another
interesting packing analyzed in Ref.@13# is the so-called
space-filling bearings@14#. In the space-filling bearings
model, cylinders having parallel axes are arranged in sp
in such a manner that in the limiting case the cylinders to
the space completely, and, in addition, they can roll on e
other without slipping. In Ref.@13#, a multifractal analysis of
this system was also carried out analogously to the Apo
nian packings analysis. The generalized dimensions obta
for a space-filling bearings model are represented in Fig
~adapted from Ref.@13#!. Again, we chose the axes so th
the representation~17! corresponds to straight lines. One ca
see that there are two regions ofq where a representation lik
Eq. ~17! gives a good approximation of the data. One reg
~for q,1) corresponds toA5D0 , while another region cor-
responds toA5Deff,D0. One can interpret the last situatio
as a self-organization process with a new effective capa
dimensionDeff,D0.

Now we can consider the kinetic surface roughening p
cess, taking into account thatA5Deff in representation~17!
can be, generally, different fromD0 . Then, if we substitute
Eq. ~17! into Eq. ~4! ~with A5Deff), we obtain the finite-

FIG. 1. Spectrum of generalized dimensionsDq ~adapted from
Ref. @13#! for an Apollonian packing. The straight line is drawn fo
comparison with the FT approximation~17!.

FIG. 2. Spectrum of generalized dimensionsDq ~adapted from
Ref. @13#! for space-filling bearings. The straight lines are drawn
comparison with the FT approximation~17! for two regions ofq.
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temperature approximation for the generalized roughness
ponents

Hq;H11B ln q. ~24!

The kinetic surface roughening models based on eq
tions of the Langevin type turned out to be very useful
study the molecular beam epitaxy@15–17#. Figure 3 shows
the data (Hq) obtained in recent numerical simulations
this process@Refs. @16# ~full circles! and @17# ~Lai–Das
Sarma model, crosses!#. The straight line is drawn for com
parison with Eq.~24! ~hereB,0). One can see that the F
approximation~24! is in good agreement with these data.

FIG. 3. Generalized roughness exponentsHq against lnq for
molecular beam epitaxy@data taken from Refs.@16# ~full circles!
and from@17# ~crosses!#. The straight line is drawn for compariso
with the FT approximation~24!.
r,
x-

a-

The question of location the nearest~to point q50) sin-
gularities in the complex-q plane for these processes is ope
Therefore we cannot givea priori estimates of the radii of
convergence of the FT approximation for these proces
On the other hand, to understand reasons for the ‘‘logar
mic’’ approximation ~24!, it is useful to recall the recently
suggested~and argued! connection between height fluctua
tions in epitaxial growth models and intermittent fluctuatio
in fluid turbulence@16# ~see also Ref.@18#!. Indeed, it was
shown in a recent paper@19# that a stretched exponentia
distribution of the local velocity gradient@20# is a reason for
the appearance of the logarithmic term in the generali
scaling laws. On the other hand, the numerical simulati
performed in Refs.@16,17# give evidence that the distributio
of step sizes at the epitaxial growth has the form of
stretched exponential as well.

Moreover, the logarithmic corrections behind the line
~‘‘parabolic’’ ! approximation@7# can also appear in thermo
dynamics approaches considering the real temperatures
~see, for instance, a constant-specific-heat approach to
multifractality of mesoscopic systems@21#!. In the last case,
however, the analytic character of the logarithmic correct
is not so clear as for the approach considered in the pre
paper. To obtaina priori criteria for the applicability of the
different thermodynamic approaches to concrete phys
systems one should stay a step behind the framework of
thermodynamic interpretation. This seems to be an inter
ing problem for future investigations.
as,
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