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Multifractal expansions and kinetic surface roughening processes

A. Bershadskii
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An analytic continuation method has been developed to improve the multifractal analytic expansions ap-
proach to the kinetic surface roughening processes. An analytic result for the dependence of the roughness
exponentH, on the indexq of the moments of the pair correlation function is obtained using this method.
Application of the method to some geometrical models is discussed, and good agreement established with
results of numerical simulations of the molecular beam epitaxy obtained by different authors.
[S1063-651%98)11308-9

PACS numbds): 81.15~z, 68.55--a, 05.40+]

I. INTRODUCTION (q=1)Dg=0q(Hq—H1) +(q—1)Deg (3

Kinetic surface roughening has recently been of great inor
terest to scientists owing to its relevance to a number of
phenomena of practical importance, such as molecular beam
epitaxy, formation of biological patterns, et(see, for re-
views, Refs[1-3] and references therginThe surface usu-
ally grows from a flat substrate and, due to presence of noisggenerallyD ¢ can be different fronD; see Sec. ¥ The
excitations, becomes rough during its evolution. The genersimplest way to obtain an analytical representation Bgr
alized roughness exponertig are used to describe this mul- [and then, using Ed4), for H] is to use a Maclaurin power
tifractal process. They are introduced through the variouseries expansion in a vicinity of=0. It is well known,
moments of the height differencéthe generalized height- however, that a linear approximation of the generalized di-
height correlation functions mensionD, is generally applicable in a narrow vicinity of
the pointg=0 only (see, for instance, Reff5—7] and ref-

1 " erences therejn On the other hand, a quantitative descrip-
S(N=x 241 [h(x;) —h(x;+r)|9~ra7, (D tion of multifractals beyond the linear approximation of
is now possible due to the possibility of obtaining rather
whereN is the number of points over which the average isaccurate numerical data. In the present paper we shall show
taken, and the limit —0 is considered. For a standard par- that the concept of analytical continuation of standard ther-
tition, r ~1/N. The authors of Refl4] assumed that, when Modynamics quantities on a complétemperaturg plane
evaluating Eq(1), r andN may be related in a way different can be adapted in the context of multifractal measures. This
from r~1/N. That is,N~r ~Peft (D4 could be considered @adaptation should then provide an improvement of the stan-
here as a fractal dimension of the effective support of thélard linear approximation of the generalized dimensiogs
process; for more details, see Sed. Vhe choice of a par- Then we apply this finite-temperature approximation to the
ticular partition has no effect on the, spectrum. However, Kinetic growth processes using refationsfup.
Der enters the relation betweety, and the so-called gener-

—-1)(D,—D
Hq=H1+ (q )( q eff)

4

N

alized dimension® . In Ref.[4], a partition of the interval Il. THERMODYNAMIC INTERPRETATION
[0,1] into N intervals with the measure OF MULTIFRACTALITY
Ih(x;)—h(x;+T)| Let us, first of all, recall a thermodynamic interpretation
pi(r)=— (2 of multifractality (see, for instance, Ref$8,9] and refer-
> |h(x)—h(x;+1)] ences therein Suppose that the total volume of a sample
<1 ! ! consists of ad-dimensional cube of size. We divide this

volume intoN boxes of linear sizé [N~ (L/1)9]. We label
was introduced. This can be viewed as a probability measureach box by the index, and construct for each box the
and one can construct the corresponding generating functiomeasure function of a fielgt(x,t),

N
Z4n=3, B0 wh= [ wood,

and introduce the corresponding spectrlry through the  wherev; is volume of theith box. Then the generalized
expressiorzq(r)~r(q*1)Dq in the limitr —0. Using this ap- dimensionD, can be introduced by the following scaling
proach, the authors of Reff4] obtained the following rela- relationship (see, for instance, Ref$8,9] and references
tionships betweed, andH, therein:
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where the partition function

Dy=

Z(@)=2 pi
This follows the scaling

Z(q)~ (/L)
where

7(q)=Dg(q—1). 5

On the other hand, the partition function can be represente

as follows

Z(Q)”—‘f p(a) (/L)% da,

wherea represents the singularity strength of the meagure
and thef(a) singularity spectrum describes the statistical
distribution of the singularity exponent. If we cover the
support of the measure with balls of sizel, the number of
such balls that scale likd/L)¢, for a givena, behaves like
N, (I/L)~ (/L) T In the limit (I/L)—0, the sum is
dominated by the term{L) "%~ f(@)] Then, from the defi-
nition of 7(q), one obtains

7(q)=min[qa—f(a)].

Thus 7(q) is obtained by Legendre transforming thex).
Whenf(a) and 7(q) are smooth functions, this relationship
can be rewritten in the following way

df

() =qa—f(a), da U (6)

The thermodynamics interpretation of these relationships
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in the first order approximation is

2

f f(0)+q? ! f 9
(@)~f(0)+a” 5 ae)’ 9)
since generallydf/dq),-o=0 [see Eq(6)].

The generalized dimension spectrum corresponding to Eq.
(9) is (see, for instance, Reff7] and references thergin

Dy~Do+aaq, (10
wherea is some constant.

It is known that entropy can have singularities in a com-
plex temperature plangee, for instance, Reff10-12 and
references thereinlf the multifractal entropyf(q) has sin-
%ularities on the compleg plane, then the radius of conver-
gence of thereal Maclaurin series expansiof8) is deter-
mined by the distance from the poigt=0 to a nearest
singularity off(q) in the complex plane. One could then use
the standard procedure of analytic continuation to obtain a
power series expansion beyond the circle of convergence of
expansion(8)

df
f(q)=f(qo)+(q—qo)<d—q)

&

whereqg is modulus of the complex-temperature singularity
nearest to the poirg=0.
Let us rewrite Eq(11) in a form similar to Eq(8):

q=dg

d2f
do?

1

+(4=00)* 5 +eoe

q=dg

(11)

f(q)=A+Bq+---, (12

where

df

E

q

(13

|

df
A:f(QO)_QO<d_q)

1
q=4qg q=dg

means that] can be interpreted with an inverse temperature

q=T"1, and the limit {/L)—0 can be seen as the thermo-
dynamic limit of infinite volume[V=In(L/l)—~]. Then by
identifying «;=In w;/In(L/1) to the energyE; (per unit of
volume of a microstate, one can rewrite the partition func-
tion under the familiar form

Z<q>=2i exp —qE). (7)

From the definitionf (a) =In N((I/L))/In(L/l), the singular-
ity spectrumf(a) plays the role of the entropfper unit of
volume.

IIl. ANALYTIC CONTINUATION

Expansion of the entrop¥(a(q)) in a power seriegthe
high-temperature expansipn

df) (dzf

prps v

da/ dq

1

f(q)=1(0)+q +9° 5 +oe

gq=0

)

Using Eq.(6) it is easy to show that(q) corresponding to
Eqg. (12) has the form
7= —A+(C-B)q+BqIng+---, (14

whereC is some constantyt>0). One can see that an addi-
tional “logarithmic” term appears in the finite-temperature
(FT) expansion(14).

Using the condition7(1)=0 [see Eq.(5)], we obtain,
from Eq. (14),

A=C-B, (15
and then we can rewrite E¢14) as
7q=A(q—1)+Bging+--- . (16)
It follows from Eqgs.(5) and (16) that
In
Dq=A+Bu+---. a7

(a—1)
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IV. AN EXAMPLE OF THE MULTIFRACTAL
COMPLEX-TEMPERATURE SINGULARITIES
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1.2

Let us consider the multifractality of a strange attractor of

the baker map for which analytical results are available. This

transformation is defined as

[Xn+1:Yn+1]=[1Xn Y/ 7], Ya<m,

(18

[Xn+1aYn+1]:[%+|2Xn (Yn=I(1=n)], Yai>7.

The attractor of this map consists of an infinite number of

lines in they direction which intersect a horizontal line in

11

1.0 ¢ 4 ]
1

(g Ing)/(g-1)

FIG. 1. Spectrum of generalized dimensiddg (adapted from
Ref.[13]) for an Apollonian packing. The straight line is drawn for

two interwoven Cantor sets. These sets are characterized lsgmparison with the FT approximatida7).

contraction rate$; andl,, and are visited with probabilities
nand 1- 7, respectively. The dimension spectridy of the
cross section follows from

7% (1-p9
|(1q—1>DqJr TR

(19

If we introduce the definitiong%=a, (1— 7;)“=b,l(2q*l)Dq

=G, and Inl;/In l,=k, then we can rewrite Eq19) as
G*~bGk "V —-a=0. (20)
From this equation one obtains

dG  da/dg+(db/dg)G* Y
dg kGK Y—pk—-1)Gk-2"

dG/dq has a singularity whe®=b(k—1)/k. Substituting
this relationship into Eq(20) we obtain values ofy for
which dG/dq is singular:

Inc

a1 7 @
where
(k=1)( D)
i S— (22
Since
dD,
f(q)=Dgyt+a(g—1) a9 (23

the entropyf(q) of the baker map also has singularities at
the same values af=qp.

The constant is positive when K—1)=—1/n, wheren
=3,5,7 ... . Forthese specific values ¢ corresponding
values ofq, are real numbers, andG/dq [and, conse-
quently, f(q)] has singularities on the real axis. In the gen-
eral case, however, the valuesayf are complex.

V. APPLICATIONS

To apply the FT approximation to real systems, let us start
from simple geometrical examples. In Apollonian packings,

for instance, nonoverlapping circles of very different radii

packings was carried out using the scaling behavior of the
density distribution of the points where the circles touch each
other. The set of these points provides the basis for an ap-
propriate measure. The generalized dimensiDgsassoci-
ated with the multifractal scaling of the distribution of touch-
ing points in an Apollonian packing were calculated in Ref.
[13]. Figure 1(adapted from Ref.13]) shows a set oD, is
obtained for the Apollonian packing. We chose the axes so
that a straight line in this figure corresponds to the represen-
tation (17). One can see that in this cage=D,. Another
interesting packing analyzed in Rdfl3] is the so-called
space-filling bearingd14]. In the space-filing bearings
model, cylinders having parallel axes are arranged in space
in such a manner that in the limiting case the cylinders to fill
the space completely, and, in addition, they can roll on each
other without slipping. In Ref.13], a multifractal analysis of
this system was also carried out analogously to the Apollo-
nian packings analysis. The generalized dimensions obtained
for a space-filling bearings model are represented in Fig. 2
(adapted from Ref[13]). Again, we chose the axes so that
the representatio(l?) corresponds to straight lines. One can
see that there are two regionsgpivhere a representation like
Eq. (17) gives a good approximation of the data. One region
(for q<1) corresponds té&= D, while another region cor-
responds tA= D 4<Dg,. One can interpret the last situation
as a self-organization process with a new effective capacity
dimensionD ¢4<Dy.

Now we can consider the kinetic surface roughening pro-
cess, taking into account thAt= D in representatioril7)
can be, generally, different fro,. Then, if we substitute
Eq. (17) into Eq. (4) (with A=D), we obtain the finite-

14

1.2 1 1
1

(g Ing)/(g-1)

FIG. 2. Spectrum of generalized dimensiddg (adapted from

are used to tile the region bounded by three touching circleref.[13]) for space-filling bearings. The straight lines are drawn for

[13]. In Ref.[13], a multifractal analysis of the Apollonian

comparison with the FT approximatidt7) for two regions ofg.
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Lo ~ The question of location the neardst pointq=0) sin-
gularities in the complextplane for these processes is open.
os ¥ Therefore we cannot giva priori estimates of the radii of
:T \ convergence of the FT approximation for these processes.
On the other hand, to understand reasons for the “logarith-
06 \.\ mic” approximation(24), it is useful to recall the recently
* suggestedand arguejl connection between height fluctua-
04 o 0'. . 1"0 1'5 _tions.in epitaxial growth models and intermittent flugtuations
’ in fluid turbulence[16] (see also Refl18]). Indeed, it was
In q shown in a recent papdi9] that astretched exponential

distribution of the local velocity gradief20] is a reason for
molecular beam epitaxjdata taken from Refd.16] (full circles) the gppearance of the logarithmic term in t.he g.eneral.lzed
and from[17] (crossey|. The straight line is drawn for comparison scaling Iaws. On the othe'r ha”?" the numerlcaI.S|r'nuIa'1t|ons
with the FT approximatiori24). performed in Refd.16,17] give evidence that the distribution
of step sizes at the epitaxial growth has the form of a
temperature approximation for the generalized roughness egtretched exponential as well.
ponents Moreover, the logarithmic corrections behind the linear
(“parabolic”) approximation 7] can also appear in thermo-
Hq~H1+BInq. (24 dynamics approaches considering the real temperatures only
(see, for instance, a constant-specific-heat approach to the
The kinetic surface roughening models based on equanultifractality of mesoscopic systenf21]). In the last case,
tions of the Langevin type turned out to be very useful tohowever, the analytic character of the logarithmic correction
study the molecular beam epitaky5—17. Figure 3 shows is not so clear as for the approach considered in the present
the data H,) obtained in recent numerical simulations of paper. To obtaira priori criteria for the applicability of the
this process[Refs. [16] (full circles) and [17] (Lai-Das different thermodynamic approaches to concrete physical
Sarma model, crossgs The straight line is drawn for com- systems one should stay a step behind the framework of the
parison with Eq.(24) (hereB<0). One can see that the FT thermodynamic interpretation. This seems to be an interest-
approximation(24) is in good agreement with these data. ing problem for future investigations.

FIG. 3. Generalized roughness exponeHts against Ing for

[1] T. Vicsek, Fractal Growth Phenomen@nNorld Scientific, Sin-  [11] V. Matveev and R. Shrock, J. Phys.28, 1557(1995.

gapore, 1988 [12] C. Itzykson, R. B. Pearson, and J. B. Zuber, Nucl. Phy22&
[2] A.-L. Barabasi and H. E. Stanleffractal Concepts in Surface 415(1983.

Growth (Cambridge University Press, Cambridge, 1995 [13] S. S. Manna and T. Vicsek, J. Stat. Ph§4, 525 (1991).
[3] J. Krug, Adv. Phys46, 139(1997). [14] H. J. Herrmann, irCorrelations and Connectivifedited by H.
[4] A.-L. Barabasi, P. Szepfalusy, and T. Vicsek, Physica7s, E. Stanley and N. OstrowskKluwer, Dordrecht, 1990

17 (1991. [15] D. E. Wolf and J. Villain, Europhys. Lettl3, 389 (1990.
[5] T.C. Halseyet al, PhyS Rev. A33, 1141(1986 [16] 3. Krug, PhyS Rev. Let72, 2907(1994)

[6] G. Paladin and A. Vulpiani, Phys. Rep56, 147 (1987).
[7] M. Janssen, Int. J. Mod. Phys. &8 943 (1994.
[8] H. E. Stanley and P. Meakin, Natur@ondon 335 405

[17] S. Das Sarma, C. J. Lanczyski, R. Kotlyar, and S. V. Ghaisas,
Phys. Rev. B53, 359(1996.
[18] A. Kundagrami, C. Dasgupta, P. Punyindu, and S. Das Sarma,

(1988.
. Phys. Rev. B57, R3703(1998.
(9] (Al'ggg'ec’do’ E. Bacry, and J. F. Muzy, Physicai3 232 1) 5 ‘Bershadskii, Europhys. Let89, 587 (1997,

[10] M. Fisher,The Nature of Critical PointsLectures in Theoret- [20] P. Kailasnath and K. R. Sreenivasan, Phys. Rev. Bé{t2766

ical Physics Vol. 12GUniversity of Colorado Press, Boulder, (1992. .
1965, p. 1. [21] A. Bershadskii, Mod. Phys. Lett. B2, 11 (1998.



